一列数,前两个数是1,3,从第三个数开始,每个数都是它前面两个数的和,即1,3,4,7,11,18,29,…到第2006个数为止,共有______个奇数.
答案
1338
解析
这个数列是按照“奇数、奇数、偶数”的顺序循环重复排列的;每一组循环中有2个奇数和1个偶数;
2006÷3=668(组)…2(个);
余数是2,这两个数都是奇数;
668×2+2=1338;
答:共有1338个奇数.
找规律的定义
在日常生活中,我们经常会碰到许多按一定顺序排列的数(或图形)。只要我们从不同的角度去分析研究,善于观察、分析、总结,就能发现规律,找到解决问题的方法。
找规律填数关键是根据已知的数找出数与数之间的规律。看相邻两数的倍数关系、差是常用的观察方法。
寻找数列的规律,通常从两个方面来考虑:
(1)寻找各项与项数间的关系;
(2)考虑相邻项之间的关系,然后,再总结出一般的规律。