同底数幂的乘法 ( 一 )
教学目标
<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;
2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.
教学重点和难点
幂的运算性质.
课堂教学过程设计
一、运用实例 导入新课
引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?
学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?
要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)
本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.
为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.
二、复习提问
1.乘方的意义:求n个相同因数a的积的运算叫乘方,即
<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />
2.指出下列各式的底数与指数:
(1)3 4 ; (2)a 3 ; (3)(a+b) 2 ; (4)(-2) 3 ; (5)-2 3 .
其中,(-2) 3 与- 2 3 的含义是否相同?结果是否相等?(-2) 4 与- 2 4 呢
三、讲授新课
1.利用乘方的意义,提问学生,引出法则
计算103×102.
解:103×102=(10×10×10)+(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)
=105.
2.引导学生建立幂的运算法则
将上题中的底数改为a,则有
a 3 ·a 2 =(aaa)·(aa)
=aaaaa=a 5 , 即a 3 ·a 2 =a 5 =a 3+2 .
用字母m,n表示正整数,则有
=a m+n , 即a m ·a n =a m+n .
3.引导学生剖析法则
(1)等号左边是什么运算? (2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
四、应用举例 变式练习
例1 计算:
(1)10 7 ×10 4 ; (2)x 2 ·x 5 .
解 :(1)10 7 ×10 4 =10 7+4 =10 11 ;(2)x 2 ·x 5 =x 2+5 =x 7 .
提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.
课堂练习
计算:
(1)10 5 ·10 6 ; (2)a 7 ·a 3 ; (3)y 3 · y 2 ;
(4)b 5 · b; (5)a 6 ·a 6 ; (6)x 5 ·x 5 .
例2 计算:
(1)2 3 ×2 4 ×2 5 ;(2)y· y 2 · y 5 .
解 :(1)2 3 ×2 4 ×2 5 =2 3+4+5 =2 12 .(2) y· y 2 · y 5 =y 1+2+5 =y 8 .
对于第(2)小题,要指出y的指数是1,不能忽略.
五、小结
1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.
2.解题时要注意a的指数是1.
六、作业
同底数幂的乘法 ( 一 )
教学目标
<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;
2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.
教学重点和难点
幂的运算性质.
课堂教学过程设计
一、运用实例 导入新课
引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?
学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?
要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)
本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.
为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.
二、复习提问
1.乘方的意义:求n个相同因数a的积的运算叫乘方,即
<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />
2.指出下列各式的底数与指数:
(1)3 4 ; (2)a 3 ; (3)(a+b) 2 ; (4)(-2) 3 ; (5)-2 3 .
其中,(-2) 3 与- 2 3 的含义是否相同?结果是否相等?(-2) 4 与- 2 4 呢
三、讲授新课
1.利用乘方的意义,提问学生,引出法则
计算103×102.
解:103×102=(10×10×10)+(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)
=105.
2.引导学生建立幂的运算法则
将上题中的底数改为a,则有
a 3 ·a 2 =(aaa)·(aa)
=aaaaa=a 5 , 即a 3 ·a 2 =a 5 =a 3+2 .
用字母m,n表示正整数,则有
=a m+n , 即a m ·a n =a m+n .
3.引导学生剖析法则
(1)等号左边是什么运算? (2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
四、应用举例 变式练习
例1 计算:
(1)10 7 ×10 4 ; (2)x 2 ·x 5 .
解 :(1)10 7 ×10 4 =10 7+4 =10 11 ;(2)x 2 ·x 5 =x 2+5 =x 7 .
提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.
课堂练习
计算:
(1)10 5 ·10 6 ; (2)a 7 ·a 3 ; (3)y 3 · y 2 ;
(4)b 5 · b; (5)a 6 ·a 6 ; (6)x 5 ·x 5 .
例2 计算:
(1)2 3 ×2 4 ×2 5 ;(2)y· y 2 · y 5 .
解 :(1)2 3 ×2 4 ×2 5 =2 3+4+5 =2 12 .(2) y· y 2 · y 5 =y 1+2+5 =y 8 .
对于第(2)小题,要指出y的指数是1,不能忽略.
五、小结
1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.
2.解题时要注意a的指数是1.
六、作业