数列2,5,10,17,26,......的通项公式为
答案
解:令数列an,且a1=2,a2=5,a3=10,a4=17,a5=26。
那么可知,a5=26=17+9=17+2x5-1=a4+2x5-1,
a4=17=10+7=10+2x4-1=a3+2x4-1,
a3=10=5+5=5+2x3-1=a2+2x3-1,
a2=5=2+3=2+2x2-1=a1+2x2-1,
所以可得,an=an-1+(2n-1)
则an=an-1+(2n-1)=an-2+(2(n-1)-1)+(2n-1)=...=a1+(2x2-1)+(2x3-1)+...+(2(n-1)-1)+(2n-1)
=2+(2x2-1)+(2x3-1)+...+(2(n-1)-1)+(2n-1)
=2n+n(n-1)-(n-1)
=n^2+1
即数列2,5,10,17,26的通项式为n^2+1,且该数列为递增数列。