当前位置:首页 > 教案教学 > 教案

初中数学 矩形 教学示例二 教案

时间:2022-10-02 11:00:06 作者:小豆丁 字数:4377字


一、教学目标

1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

2.掌握比例基本性质和合分比性质.

3.通过通过的应用,培养学习的计算能力.

4.通过比例性质的教学,渗透转化思想.

5.通过比例性质的教学,激发学生学习兴趣.

二、教学设计

先学后做,启发引导

三、重点及难点

1.教学重点 比例性质及应用.

2.教学难点 正确理解成比例线段及应用.

四、课时安排

1课时

五、教具学具准备

股影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

1.什么是线段的比?

2.已知 这两条线段的比是 吗,为什么?

【讲解新课】

1.比例线段:见教材P203页。

如:见教材P203页图5-2。

又如:

a 、b 、c 、d 是成比例线段。

注:①已知 问这四条线段成比例吗?

(答:成比例。 ,这里与顺序无关)。

②若已知 a 、b 、c 、d 是成比例线段,是指 不能写成 (在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

板书教材P203页比例线段的一些附属概念。

2.比例的性质:

(1)比例的基本性质:如果 ,那么 。

它的逆命题也成立,即:如果 ,那么 。

推论:如果 ,那么 。

反之亦然:如果 ,那么 。

①基本性质证明了“比例式”和“等积式”是可以互化的。

②由 ,除可得到 外,还可得到其它七个比例式。即由一个等积式 ,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式: 。注意区别与联系。

③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

(2)合比性质:如果 ,那么

证明:∵ ,∴ 即:

同理可证: (找学生板演)

(3)等比性质:如果

那么

证明:设 ;则

等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

例1(要求了解即可)

(1)已知: ,求证: 。

证明:∵ ,∴

“通法”:∵ ,∴ 即

(2)已知: ,求证: 。

方法一:

方法二:

(1)÷(2)得:

【小结】

(1)比例线段的概念及附属概念。

(2)比例的基本性质及其应用。

八、布置作业

(1)求

① ② ③

(2)求下列各式中的 x

① ② ③ ④

九、板书设计

比例线段(二)

1.比例线段:

教师板书定义

………

比例线段的附属概念

………

2.比例的性质

(1)比例基本性质

…………

注意:(1)

3.课堂练习