当前位置:首页 > 教案教学 > 教案

初中数学 平行四边形的判定 (第一课时) 教案

时间:2022-10-02 11:03:22 作者:美篇推荐 字数:6475字


教学目标

1、知识目标:

(1)掌握勾股定理;

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的 历史 .

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主 学习 的发展体验获取 数学 知识的感受;

(2)通过有关勾股定理的 历史 讲解,对学生进行德育 教育

教学重点 :勾股定理及其应用

教学难点 :通过有关勾股定理的 历史 讲解,对学生进行德育 教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来.

勾股定理:直角三角形两直角边 的平方和等于斜边 的平方

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边

(2)学生根据上述 学习 ,提出自己的问题(待定)

学习 完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨 论.

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形.

方法二:将四个全等的直角三角形拼成如图2所示的正方形,

方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

4、定理与逆定理的应用

例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

∴ ∠2=∠C

∴CD的长是2.4cm

例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,

求证:

证 法一:过点A作AE⊥BC于E

则在Rt△ADE中,

又∵AB=AC,∠BAC=

∴AE=BE=CE

证 法二:过点D作DE⊥AB于E, DF⊥AC于F

则DE∥AC,DF∥AB

又∵AB=AC,∠BAC=

∴EB=ED,FD=FC=AE

在Rt△EBD和Rt△FDC中

在Rt△AED中,


例3 设

求证:

证明:构造一个边长 的矩形ABCD, 如图

在Rt△ABE中

在Rt△BCF中

在Rt△DEF中

在△BEF中,BE+EF>BF

例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

AD+AB+BC=3,AB+BC+CD=3

图3中,在Rt△DGF中

同理

∴图3中的路线长为

图4中,延长EF交BC于H,则FH⊥BC,BH=CH

由∠FBH= 及勾股定理得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此图中总线路的长为4EA+EF=

∵3>2.828>2.732

∴图4的连接线路最短,即图4的架设方案最省电线.

5、课堂小结:

(1)勾股定理的内容

(2)勾股定理的作用

已知直角三角形的两边求第三边

已知直角三角形的一边,求另两边的关系

6、布置作业:

a、书面作业P130#1、2、3

b、上交作业P132#1、3

板书设计

探究活动

台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

(1)该城市是否会受到这交台风的影响?请说明理由

(2)若会受到台风影响,那么台风影响该城市持续时间有多少?

(3 )该城市受到台风影响的最大风力为几级?

解:(1)由点A作AD⊥BC于D,

则AD就为城市A距台风中心的最短距离

在Rt△ABD中,∠B= ,AB=220

由 题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

故该城市会受到这次台风的影响.

(2)由题意知,当A点距台风中心不超过60千米时,

将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

该城市都会受到这次台风的影响

由勾股定理得

∴EF=2DE=

因为这次台风中心以15千米/时的速度移动

所以这次台风影响该城市的持续时间为 小时

(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为 级.