当前位置:首页 > 教案教学 > 教案

初中数学 一元二次方程实数根错例剖析课 教案

时间:2022-10-04 11:04:52 作者:知乎OK啦 字数:5557字

一、 教学 目标

1.理解一个数平方根和算术平方根的意义;

2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

3.通过本节的训练,提高学生的逻辑思维能力;

4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

二、 教学 重点和难点

教学 重点:平方根和算术平方根的概念及求法.

教学 难点:平方根与算术平方根联系与区别.

三、 教学 方法

讲练结合.

四、 教学 手段

幻灯片.

五、 教学 过程

(一)提问

1.已知一正方形面积为50平方米,那么它的边长应为多少?

2.已知一个数的平方等于1000,那么这个数是多少?

3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空

1.(  ) 2 =9;   2.(  ) 2 =0.25;

3.

5.(  ) 2 =0.0081.

学生在完成此练习时,最容易出现的错误是丢掉负数解,在 教学 时应注意纠正.

由练习引出平方根的概念.

(二)平方根概念

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).

用数学语言表达即为:若x 2 =a,则x叫做a的平方根.

由练习知:±3是9的平方根;

±0.5是0.25的平方根;

0的平方根是0;

±0.09是0.0081的平方根.

由此我们看到+3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

(   ) 2 =-4

学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结, 教师 整理).

(三)平方根性质

1.一个正数有两个平方根,它们互为相反数.

2.0有一个平方根,它是0本身.

3.负数没有平方根.

(四)开平方

求一个数a的平方根的运算,叫做开平方的运算.

由练习我们看到+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

(五)平方根的表示方法

一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.

练习:1.用正确的符号表示下列各数的平方根:

①26  ②247  ③0.2  ④3  ⑤

解:①26 的平方根是

②247的平方根是

③0.2的平方根是

④3的平方根是

⑤ 的平方根是

由学生说出上式的读法.



例1.下列各数的平方根:

(1)81; (2) ; (3) ; (4)0.49

解:(1)∵(±9) 2 =81,

∴81的平方根为±9.即:

(2)

的平方根是 ,即

(3)

的平方根是 ,即

(4)∵(±0.7) 2 =0.49,

∴0.49的平方根为±0.7.

小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个.

六.总结

本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识.

七、作业

教材P.127练习1、2、3、4.

八、 板书 设计

平方根

(一)概念     (四)表示方法     例1

(二)性质

(三)开平方

探究活动

求平方根近似值的一种方法

求一个正数的平方根的近似值,通常是查表.这里研究一种笔算求法.

例1.求 的值.

解 ∵9 2 <97<10 2

两边平方并整理得

∵x 1 为纯小数.

18x 1 ≈16,解得x 1 ≈0.9,

便可依次得到精确度

为0.01,0.001,……的近似值,如:

两边平方,舍去x 2 得19.8x 2 ≈-1.01,