4.6两角和与差的正弦、余弦、正切(第二课时)
(一)教学具准备
投影仪
(二)教学目标
1.掌握利用 得到的两角和与差的正弦公式.
2.运用 公式进行三角式的求值、化简及证明.
(三)教学过程
1.已知 两角,我们可以利用 的三角函数去计算复合角 的余弦,那么,我们能否用 的三角函数去表达复合角 的正弦呢?本节课将研究这一问题.
2.探索研究
(1)请一位同学在黑板上写出 , 的展开式.
.
由于公式中的 是任意实数,故我们对 实施特值代换后并不影响等号成立,为此我们曾令 ,得到 ,
两个熟悉的诱导公式,请同学们尝试一下,能否在 中对 选取特殊实数代换,使 诱变成 呢?或者说能否把 改成用余弦函数来表示呢?请同学回答.
生:可以,因为
该同学的思路非常科学,这样就把新问题 问题化归为老问题: .
事实上: (视“ ”为 )
这样,我们便得到公式.
简化为 .
由于公式中的 仍然是一切实数,请同学们再想一下,如何获得 的展开式呢?请同学回答.
生:只要在公式 中用 代替 ,就可得到:
即
师:由此得到两个公式:
对于公式 还可以这样来推导:
说明:
(1)上述四个公式 ,虽然形式、结构不同,但它们本质是相同的,因为它们同出一脉:
这样我们只要牢固掌握“中心”公式 的由来及表达方式,就掌握了其他三个公式了.这要作为一种数学思想、一个数学方法来仔细加以体会.
(2) 、 是用 的单角函数表达复合角 的正、余弦.反之,我们不得不注意,作为公式的逆用,我们也可以用复合角 的三角函数来表达单角三角函数.诸如: , , 及 四种表达式,实质上是方程思想的体现:
由 得:
①
由 得
②
由 ,得:
③
由 得:
④
等式①、②、③、④在求值、证明恒等式中无疑作用是十分重大的.
(2)例题分析
【例1】 不查表,求 , 的值.
解:
说明:我们也可以用 系统来做:
【例2】已知, , , , 求, .
分析:观察公式 和本题的条件,必须先算出 ,
解:由 , 得
又由 , 得
∴
【例3】不查表求值:
(1) ;
(2) .
解:(1)
(2)
练习(投影)
(1) , ,则 .
(2)在△ 中,若 ,则△ 是___________.
参考答案:
(1)∴
∴
(2)由 ,
∴
∴ , 为钝角,即△ 是钝角三角形.
【例4】求证: .
分析:我们从角入手来分析,易见左边有复角(即两角和与差)右边全是单角,所以思路明确,就是要把复角变单角.
证明:
左边
右 ∴原式成立
如果我们本着逆用公式来看待本题,那么还可这样想:
由
令 , 则
①
至于
我们可这样分析:
∵
令 得
同理
∴①可进一步改写为:
∴ ……②
又∵
……③
由②、③得
本题还可以从函数名称来分析,左边是正、余弦函数,右边是正切函数,故可考虑从右边入手用化弦法,请同学们自己把上面过程反过来,从右边推出左边.
【例5】求证:
师:本题我们可以从角的形式来分析,左边是单角,右边是复角,如果从右边证左边则要把复角变单角(即利用和角公式);如果从左边证右边则须配一个角 ,所以本题起码有两种证法.
证法1:右边
左边
∴原式成立
师:另一种证法根据刚才的分析要配出角 ,怎样配?大家仔细观察证法一就不难发现了.
证法2:(学生板书)
左边
右边 ∴原式成立
3.演练反馈(投影)
(1)化简
(2)已知 ,则 的值( )
A.不确定,可在[0、1]内取值 B.不确定,可在[-1、1]中取值
C.确定,等于1 D.确定,等于1或-1
参考答案:
(1)原式
(2)C
4.总结提炼
(1)利用“拆角”“凑角”变换是进行三角函数式求值、证明、化简的常用技巧,如: , , .在三角形中, , 等变换技巧,同学们应十分熟悉.
(2)本节课的例5,代表着一类重要题型,同学们要学习它的凑角方法,一般地 ,其中 .
(3)在恒等式中,实施特值代换,是一类重要的数学方法——母函数法,这种方法在数学的其他学科中,均有用武之地。它反映的是特殊与一般的辨证统一关系.
(四)板书设计
课题:两角和与差的正弦 1.公式推导 ①
=…… 得到公式……… 把公式中 换成 得公式……… 2.公式的结构特点 用单角函数表示复角函数 右边中两个积的函数名称不同 ……运算符号同左边括号 中的运算符号一致(区别于 、 ) 3.折、凑角技巧 |
例1 例2 例3 |
例4 例5 演练反馈 总结提炼 |