一、知识结构
本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子.
二、重点难点分析
这一节的重点是集合的基本概念和表示方法,难点是运用集合的三种常用表示方法正确表示一些简单的集合.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解集合的概念和表示方法.
1.关于牵头图和引言分析
章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到集合和逻辑的知识,也就是把它 数学 化.一方面提高用 数学 的意识,一方面说明集合和简易逻辑知识是高中 数学 重要的基础.
2.关于集合的概念分析
点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.
初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.
我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他 数学 概念一样,不是人们凭空想象出来的,而是来自现实世界.
3.关于自然数集的分析
教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意.
新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数{0,1,2,…,9}中最小的数,有了0,减法运算 仍属于自然数,其中 .因此要注意几下几点:
(1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;
(2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;
(3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用.
4.关于集合中的元素的三个特性分析
集合中的每个对象叫做这个集合的元素.例如“中国的直辖市”这一集合的元素是:北京、上海、天津、重庆。
集合中的元素常用小写的拉丁字母 ,…表示.如果 a 是集合A的元素,就说 a 属于集合A,记作 ;否则,就说 a 不属于A,记作
要正确认识集合中元素的特性:
(l)确定性: 和 ,二者必居其一.
集合中的元素必须是确定的.这就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其他对象都不用于这个集合.如果说“由接近 的数组成的集合”,这里“接近 的数”是没有严格标准、比较模糊的概念,它不能构成集合.
(2)互异性:若 , ,则
集合中的元素是互异的.这就是说,集合中的元素是不能重复的,集合中相同的元素只能算是一个.例如方程 有两个重根 ,其解集只能记为{1},而不能记为{1,1}.
(3)无序性:{ a , b }和{ b , a }表示同一个集合.
集合中的元素是不分顺序的.集合和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合.
5.要辩证理解集合和元素这两个概念
(1)集合和元素是两个不同的概念,符号和是表示元素和集合之间关系的,不能用来表示集合之间的关系.例如 的写法就是错误的,而 的写法就是正确的.
(2)一些对象一旦组成了集合,那么这个集合的元素就是这些对象的全体,而非个别现象.例如对于集合 ,就是指所有不小于0的实数,而不是指“ 可以在不小于0的实数范围内取值”,不是指“ 是不小于0的一个实数或某些实数,”也不是指“ 是不小于0的任一实数值”……
(3)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.
6.表示集合的方法所依据的国家标准
本小节列举法与描述法所使用的集合的记法,依据的是新国家标准如下的规定.
符号 |
应用 |
意义或读法 |
备注及示例 |
|
|
诸元素 构成的集 |
也可用 ,这里的I表示指标集 |
|
|
使命题 为真的A中诸元素之集 |
例: ,如果从前后关系来看,集A已很明确,则可使用 来表示,例如 |
此外, 有时也可写成 或
7.集合的表示方法分析
集合有三种表示方法:列举法、描述法、图示法.它们各有优点.用什么方法来表示集合,要具体问题具体分析.
(l)有的集合可以分别用三种方法表示.例如“小于 的自然数组成的集合”就可以表为:
①列举法: ;
②描述法: ;
③图示法:如图1。
(2)有的集合不宜用列举法表示.例如“由小于 的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素—一列举出来,但这个集合可以这样表示:
①描述法: ;
②图示法:如图2.
(3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例如:
①集合 中的元素是 ,它表示函数 中自变量 的取值范围,即 ;
②集合 中的元素是 ,它表示函数值。的取值范围,即 ;
③集合 中的元素是点 ,它表示方程 的解组成的集合,或者理解为表示曲线 上的点组成的集合;
④集合 中的元素只有一个,就是方程 ,它是用列举法表示的单元素集合.
实际上,这是四个完全不同的集合.
列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.
8.集合的分类
含有有限个元素的集合叫做有限集,如图1所示.
含有无限个元素的集合叫做无限集,如图2所示.
9.关于空集分析
不含任何元素的集合叫做空集,记作
.空集是个特殊的集合,除了它本身的实际意义外,在研究集合、集合的运算时,必须予以单独考虑.
教学设计方案
集合
知识目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
能力目标:
(1)重视基础知识的教学、基本技能的训练和能力的培养;
(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;
德育目标:
激发学生 学习 数学 的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学 学习 态度和勇于创新的精神。
教学重点 :集合的基本概念及表示方法
教学难点 :运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:2课时
教 具:多媒体、实物投影仪
教学过程 :
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国 数学 家);
4.“物以类聚”,“人以群分”;
5.教材中例子(P 4 )。
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念(例子见书):
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合。
(2)元素:集合中每个对象叫做这个集合的元素。
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合。记作N
(2)正整数集:非负整数集内排除0的集。记作N * 或N +
(3)整数集:全体整数的集合。记作Z
(4)有理数集:全体有理数的集合。记作Q
(5)实数集:全体实数的集合。记作R
注:
(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。记作N * 或N + 、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A;
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作 .
4、集合中元素的特性
(1)确定性:
按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
(2)互异性:
集合中的元素没有重复。
(3)无序性:
集合中的元素没有一定的顺序(通常用正常的顺序写出)
注:
1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
2、“∈”的开口方向,不能把a∈A颠倒过来写。
练习题
1、教材P 5 练习
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数。 (不确定)
(2)好心的人。 (不确定)
(3)1,2,2,3,4,5.(有重复)
阅读教材第二部分,问题如下:
1.集合的表示方法有几种?分别是如何定义的?
2.有限集、无限集、空集的概念是什么?试各举一例。
(二)集合的表示方法
1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例如,由方程 的所有解组成的集合,可以表示为{-1,1}.
注:(1)有些集合亦可如下表示:
从51到100的所有整数组成的集合:{51,52,53,…,100}
所有正奇数组成的集合:{1,3,5,7,…}
(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。
描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x∈A| P(x)}
含义:在集合A中满足条件P(x)的x的集合。
例如,不等式 的解集可以表示为: 或
所有直角三角形的集合可以表示为:
注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
如:{直角三角形};{大于10 4 的实数}
(2)错误表示法:{实数集};{全体实数}
3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。
注:何时用列举法?何时用描述法?
(1) 有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。
如:集合
(2) 有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
如:集合 ;集合{1000以内的质数}
注:集合 与集合 是同一个集合吗?
答:不是。
集合 是点集,集合 = 是数集。
(三) 有限集与无限集
1、 有限集:含有有限个元素的集合。
2、 无限集:含有无限个元素的集合。
3、 空集:不含任何元素的集合。记作Φ,如:
练习题:
1、P 6 练习
2、用描述法表示下列集合
①{1,4,7,10,13}
②{-2,-4,-6,-8,-10}
3、用列举法表示下列集合
①{x∈N|x是15的约数} {1,3,5,15}
②{(x,y)|x∈{1,2},y∈{1,2}} {(1,1),(1,2),(2,1)(2,2)}
注:防止把{(1,2)}写成{1,2}或{x=1,y=2}
③
④ {-1,1}
⑤ {(0,8)(2,5),(4,2)}
⑥
{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}
三、小 结:
本节课 学习 了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于、有限集、无限集、空集)
2.集合的表示方法:(列举法、描述法、文氏图共3种)
3.常用数集的定义及记法
四、课后作业:教材P 7 习题1.1
五、 板书设计 :
课题 一、知识点 (一) |
(二) |
例题: 1. |
2. |
六、课后反思:
本节课在教学时主要教会学生 学习 集合的表示方法,在认识集合时,应从两方面入手:
(1)元素是什么?
(2)确定集合的表示方法是什么?表示集合时,与采用字母名称无关。
探究活动
【题目】数集A满足条件:若 ,则 ( )
(1)若 ,试求出A中其他所有元素;
(2)自己设计一个数属于A,然后求出A中其他所有元素;
(3)从上面两小题的解答过程中,你能悟出什么道理?并大胆证明你发现的这个“道理”.
【参考答案】
(1)其他所有元素为-1, .
(2)略
(3)A中只能有3个元素,它们分别是
,
且三个数的乘积为-1.